metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.3D28, C7⋊2C2≀C4, (C2×D4).5D14, C4.D4⋊5D7, (C2×C28).13D4, (C23×D7)⋊2C4, C23.D7⋊3C4, C23.3(C4×D7), C23⋊Dic7⋊7C2, C23⋊D14.4C2, (C22×C14).12D4, C14.11(C23⋊C4), C22.12(D14⋊C4), (D4×C14).170C22, C2.12(C23.1D14), (C2×C4).1(C7⋊D4), (C7×C4.D4)⋊11C2, (C22×C14).3(C2×C4), (C2×C14).5(C22⋊C4), SmallGroup(448,32)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.3D28
G = < a,b,c,d,e | a2=b2=c2=1, d28=c, e2=a, ab=ba, ac=ca, dad-1=abc, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=acd27 >
Subgroups: 780 in 94 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, M4(2), C2×D4, C2×D4, C24, Dic7, C28, D14, C2×C14, C2×C14, C23⋊C4, C4.D4, C22≀C2, C56, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×C14, C2≀C4, D14⋊C4, C23.D7, C23.D7, C7×M4(2), C2×C7⋊D4, D4×C14, C23×D7, C23⋊Dic7, C7×C4.D4, C23⋊D14, C23.3D28
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D14, C23⋊C4, C4×D7, D28, C7⋊D4, C2≀C4, D14⋊C4, C23.1D14, C23.3D28
(1 29)(2 30)(5 33)(6 34)(9 37)(10 38)(13 41)(14 42)(17 45)(18 46)(21 49)(22 50)(25 53)(26 54)
(1 29)(3 31)(5 33)(7 35)(9 37)(11 39)(13 41)(15 43)(17 45)(19 47)(21 49)(23 51)(25 53)(27 55)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 42 29 14)(2 13 30 41)(3 12)(4 11)(5 38 33 10)(6 9 34 37)(7 8)(15 56)(16 55)(17 26 45 54)(18 53 46 25)(19 52)(20 51)(21 22 49 50)(23 48)(24 47)(27 44)(28 43)(31 40)(32 39)(35 36)
G:=sub<Sym(56)| (1,29)(2,30)(5,33)(6,34)(9,37)(10,38)(13,41)(14,42)(17,45)(18,46)(21,49)(22,50)(25,53)(26,54), (1,29)(3,31)(5,33)(7,35)(9,37)(11,39)(13,41)(15,43)(17,45)(19,47)(21,49)(23,51)(25,53)(27,55), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,42,29,14)(2,13,30,41)(3,12)(4,11)(5,38,33,10)(6,9,34,37)(7,8)(15,56)(16,55)(17,26,45,54)(18,53,46,25)(19,52)(20,51)(21,22,49,50)(23,48)(24,47)(27,44)(28,43)(31,40)(32,39)(35,36)>;
G:=Group( (1,29)(2,30)(5,33)(6,34)(9,37)(10,38)(13,41)(14,42)(17,45)(18,46)(21,49)(22,50)(25,53)(26,54), (1,29)(3,31)(5,33)(7,35)(9,37)(11,39)(13,41)(15,43)(17,45)(19,47)(21,49)(23,51)(25,53)(27,55), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,42,29,14)(2,13,30,41)(3,12)(4,11)(5,38,33,10)(6,9,34,37)(7,8)(15,56)(16,55)(17,26,45,54)(18,53,46,25)(19,52)(20,51)(21,22,49,50)(23,48)(24,47)(27,44)(28,43)(31,40)(32,39)(35,36) );
G=PermutationGroup([[(1,29),(2,30),(5,33),(6,34),(9,37),(10,38),(13,41),(14,42),(17,45),(18,46),(21,49),(22,50),(25,53),(26,54)], [(1,29),(3,31),(5,33),(7,35),(9,37),(11,39),(13,41),(15,43),(17,45),(19,47),(21,49),(23,51),(25,53),(27,55)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,42,29,14),(2,13,30,41),(3,12),(4,11),(5,38,33,10),(6,9,34,37),(7,8),(15,56),(16,55),(17,26,45,54),(18,53,46,25),(19,52),(20,51),(21,22,49,50),(23,48),(24,47),(27,44),(28,43),(31,40),(32,39),(35,36)]])
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 7A | 7B | 7C | 8A | 8B | 14A | 14B | 14C | 14D | 14E | 14F | 14G | ··· | 14L | 28A | ··· | 28F | 56A | ··· | 56L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 4 | 4 | 28 | 28 | 4 | 56 | 56 | 56 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D7 | D14 | C7⋊D4 | C4×D7 | D28 | C23⋊C4 | C2≀C4 | C23.1D14 | C23.3D28 |
kernel | C23.3D28 | C23⋊Dic7 | C7×C4.D4 | C23⋊D14 | C23.D7 | C23×D7 | C2×C28 | C22×C14 | C4.D4 | C2×D4 | C2×C4 | C23 | C23 | C14 | C7 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 3 | 6 | 6 | 6 | 1 | 2 | 6 | 3 |
Matrix representation of C23.3D28 ►in GL8(𝔽113)
112 | 36 | 1 | 77 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 112 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 77 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 44 | 112 | 112 |
112 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 112 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 112 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 112 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 69 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 112 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 112 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 112 |
97 | 49 | 68 | 0 | 0 | 0 | 0 | 0 |
59 | 0 | 41 | 61 | 0 | 0 | 0 | 0 |
104 | 87 | 0 | 75 | 0 | 0 | 0 | 0 |
0 | 90 | 28 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 112 | 0 | 36 |
0 | 0 | 0 | 0 | 112 | 69 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
97 | 49 | 68 | 0 | 0 | 0 | 0 | 0 |
28 | 9 | 13 | 52 | 0 | 0 | 0 | 0 |
104 | 87 | 0 | 75 | 0 | 0 | 0 | 0 |
56 | 9 | 85 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 44 | 112 | 111 |
0 | 0 | 0 | 0 | 0 | 112 | 0 | 36 |
0 | 0 | 0 | 0 | 112 | 69 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
G:=sub<GL(8,GF(113))| [112,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,77,112,77,112,0,0,0,0,0,0,0,0,112,36,0,1,0,0,0,0,0,1,0,44,0,0,0,0,0,0,1,112,0,0,0,0,0,0,0,112],[112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,69,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112],[97,59,104,0,0,0,0,0,49,0,87,90,0,0,0,0,68,41,0,28,0,0,0,0,0,61,75,16,0,0,0,0,0,0,0,0,0,0,112,1,0,0,0,0,0,112,69,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,1],[97,28,104,56,0,0,0,0,49,9,87,9,0,0,0,0,68,13,0,85,0,0,0,0,0,52,75,7,0,0,0,0,0,0,0,0,0,0,112,1,0,0,0,0,44,112,69,0,0,0,0,0,112,0,0,0,0,0,0,0,111,36,0,1] >;
C23.3D28 in GAP, Magma, Sage, TeX
C_2^3._3D_{28}
% in TeX
G:=Group("C2^3.3D28");
// GroupNames label
G:=SmallGroup(448,32);
// by ID
G=gap.SmallGroup(448,32);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,141,36,422,184,346,297,851,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=c,e^2=a,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^27>;
// generators/relations